Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Avoiding abelian powers cyclically (2006.06307v2)

Published 11 Jun 2020 in cs.FL

Abstract: We study a new notion of cyclic avoidance of abelian powers. A finite word $w$ avoids abelian $N$-powers cyclically if for each abelian $N$-power of period $m$ occurring in the infinite word $w\omega$, we have $m \geq |w|$. Let $\mathcal{A}(k)$ be the least integer $N$ such that for all $n$ there exists a word of length $n$ over a $k$-letter alphabet that avoids abelian $N$-powers cyclically. Let $\mathcal{A}\infty(k)$ be the least integer $N$ such that there exist arbitrarily long words over a $k$-letter alphabet that avoid abelian $N$-powers cyclically. We prove that $5 \leq \mathcal{A}(2) \leq 8$, $3 \leq \mathcal{A}(3) \leq 4$, $2 \leq \mathcal{A}(4) \leq 3$, and $\mathcal{A}(k) = 2$ for $k \geq 5$. Moreover, we show that $\mathcal{A}\infty(2) = 4$, $\mathcal{A}\infty(3) = 3$, and $\mathcal{A}\infty(4) = 2$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.