The perturbation analysis of nonconvex low-rank matrix robust recovery (2006.06283v1)
Abstract: In this paper, we bring forward a completely perturbed nonconvex Schatten $p$-minimization to address a model of completely perturbed low-rank matrix recovery. The paper that based on the restricted isometry property generalizes the investigation to a complete perturbation model thinking over not only noise but also perturbation, gives the restricted isometry property condition that guarantees the recovery of low-rank matrix and the corresponding reconstruction error bound. In particular, the analysis of the result reveals that in the case that $p$ decreases $0$ and $a>1$ for the complete perturbation and low-rank matrix, the condition is the optimal sufficient condition $\delta_{2r}<1$ \cite{Recht et al 2010}. The numerical experiments are conducted to show better performance, and provides outperformance of the nonconvex Schatten $p$-minimization method comparing with the convex nuclear norm minimization approach in the completely perturbed scenario.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.