Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Continual Learning for Affective Computing (2006.06113v2)

Published 10 Jun 2020 in cs.CV and cs.LG

Abstract: Real-world application requires affect perception models to be sensitive to individual differences in expression. As each user is different and expresses differently, these models need to personalise towards each individual to adequately capture their expressions and thus, model their affective state. Despite high performance on benchmarks, current approaches fall short in such adaptation. In this work, we propose the use of Continual Learning (CL) for affective computing as a paradigm for developing personalised affect perception.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)