Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Treewidth versus clique number. I. Graph classes with a forbidden structure (2006.06067v3)

Published 10 Jun 2020 in math.CO, cs.DM, and cs.DS

Abstract: Treewidth is an important graph invariant, relevant for both structural and algorithmic reasons. A necessary condition for a graph class to have bounded treewidth is the absence of large cliques. We study graph classes closed under taking induced subgraphs in which this condition is also sufficient, which we call $(tw,\omega)$-bounded. Such graph classes are known to have useful algorithmic applications related to variants of the clique and $k$-coloring problems. We consider six well-known graph containment relations: the minor, topological minor, subgraph, induced minor, induced topological minor, and induced subgraph relations. For each of them, we give a complete characterization of the graphs $H$ for which the class of graphs excluding $H$ is $(tw,\omega)$-bounded. Our results yield an infinite family of $\chi$-bounded induced-minor-closed graph classes and imply that the class of $1$-perfectly orientable graphs is $(tw,\omega)$-bounded, leading to linear-time algorithms for $k$-coloring $1$-perfectly orientable graphs for every fixed~$k$. This answers a question of Bre\v sar, Hartinger, Kos, and Milani{\v c} from 2018 and one of Beisegel, Chudnovsky, Gurvich, Milani{\v c}, and Servatius from 2019, respectively. We also reveal some further algorithmic implications of $(tw,\omega)$-boundedness related to list $k$-coloring and clique problems. In addition, we propose a question about the complexity of the maximum weight independent set problem in $(tw,\omega)$-bounded graph classes and prove that the problem is polynomial-time solvable in every class of graphs excluding a fixed star as an induced minor.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.