Papers
Topics
Authors
Recent
2000 character limit reached

Representation formulas and pointwise properties for Barron functions (2006.05982v2)

Published 10 Jun 2020 in stat.ML, cs.LG, math.AP, and math.FA

Abstract: We study the natural function space for infinitely wide two-layer neural networks with ReLU activation (Barron space) and establish different representation formulae. In two cases, we describe the space explicitly up to isomorphism. Using a convenient representation, we study the pointwise properties of two-layer networks and show that functions whose singular set is fractal or curved (for example distance functions from smooth submanifolds) cannot be represented by infinitely wide two-layer networks with finite path-norm. We use this structure theorem to show that the only $C1$-diffeomorphisms which Barron space are affine. Furthermore, we show that every Barron function can be decomposed as the sum of a bounded and a positively one-homogeneous function and that there exist Barron functions which decay rapidly at infinity and are globally Lebesgue-integrable. This result suggests that two-layer neural networks may be able to approximate a greater variety of functions than commonly believed.

Citations (73)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.