Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

When is Particle Filtering Efficient for Planning in Partially Observed Linear Dynamical Systems? (2006.05975v2)

Published 10 Jun 2020 in cs.LG, math.OC, and stat.ML

Abstract: Particle filtering is a popular method for inferring latent states in stochastic dynamical systems, whose theoretical properties have been well studied in machine learning and statistics communities. In many control problems, e.g., partially observed linear dynamical systems (POLDS), oftentimes the inferred latent state is further used for planning at each step. This paper initiates a rigorous study on the efficiency of particle filtering for sequential planning, and gives the first particle complexity bounds. Though errors in past actions may affect the future, we are able to bound the number of particles needed so that the long-run reward of the policy based on particle filtering is close to that based on exact inference. In particular, we show that, in stable systems, polynomially many particles suffice. Key in our proof is a coupling of the ideal sequence based on the exact planning and the sequence generated by approximate planning based on particle filtering. We believe this technique can be useful in other sequential decision-making problems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube