Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Heterogeneous Graph Attention Networks for Early Detection of Rumors on Twitter (2006.05866v1)

Published 10 Jun 2020 in cs.SI, cs.IR, and cs.LG

Abstract: With the rapid development of mobile Internet technology and the widespread use of mobile devices, it becomes much easier for people to express their opinions on social media. The openness and convenience of social media platforms provide a free expression for people but also cause new social problems. The widespread of false rumors on social media can bring about the panic of the public and damage personal reputation, which makes rumor automatic detection technology become particularly necessary. The majority of existing methods for rumor detection focus on mining effective features from text contents, user profiles, and patterns of propagation. Nevertheless, these methods do not take full advantage of global semantic relations of the text contents, which characterize the semantic commonality of rumors as a key factor for detecting rumors. In this paper, we construct a tweet-word-user heterogeneous graph based on the text contents and the source tweet propagations of rumors. A meta-path based heterogeneous graph attention network framework is proposed to capture the global semantic relations of text contents, together with the global structure information of source tweet propagations for rumor detection. Experiments on real-world Twitter data demonstrate the superiority of the proposed approach, which also has a comparable ability to detect rumors at a very early stage.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.