Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Embedding Task Knowledge into 3D Neural Networks via Self-supervised Learning (2006.05798v1)

Published 10 Jun 2020 in cs.CV

Abstract: Deep learning highly relies on the amount of annotated data. However, annotating medical images is extremely laborious and expensive. To this end, self-supervised learning (SSL), as a potential solution for deficient annotated data, attracts increasing attentions from the community. However, SSL approaches often design a proxy task that is not necessarily related to target task. In this paper, we propose a novel SSL approach for 3D medical image classification, namely Task-related Contrastive Prediction Coding (TCPC), which embeds task knowledge into training 3D neural networks. The proposed TCPC first locates the initial candidate lesions via supervoxel estimation using simple linear iterative clustering. Then, we extract features from the sub-volume cropped around potential lesion areas, and construct a calibrated contrastive predictive coding scheme for self-supervised learning. Extensive experiments are conducted on public and private datasets. The experimental results demonstrate the effectiveness of embedding lesion-related prior-knowledge into neural networks for 3D medical image classification.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.