Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Use of Machine Learning for unraveling hidden correlations between Particle Size Distributions and the Mechanical Behavior of Granular Materials (2006.05711v2)

Published 10 Jun 2020 in cond-mat.dis-nn, cs.LG, and stat.ML

Abstract: A data-driven framework was used to predict the macroscopic mechanical behavior of dense packings of polydisperse granular materials. The Discrete Element Method, DEM, was used to generate 92,378 sphere packings that covered many different kinds of particle size distributions, PSD, lying within 2 particle sizes. These packings were subjected to triaxial compression and the corresponding stress-strain curves were fitted to Duncan-Chang hyperbolic models. A multivariate statistical analysis was unsuccessful to relate the model parameters with common geotechnical and statistical descriptors derived from the PSD. In contrast, an artificial Neural Network (NN) scheme, trained with a few hundred DEM simulations, was able to anticipate the value of the model parameters for all these PSDs, with considerable accuracy. This was achieved in spite of the presence of noise in the training data. The NN revealed the existence of hidden correlations between PSD of granular materials and their macroscopic mechanical behavior.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube