Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Supervised Learning of Sparsity-Promoting Regularizers for Denoising (2006.05521v1)

Published 9 Jun 2020 in eess.IV and cs.CV

Abstract: We present a method for supervised learning of sparsity-promoting regularizers for image denoising. Sparsity-promoting regularization is a key ingredient in solving modern image reconstruction problems; however, the operators underlying these regularizers are usually either designed by hand or learned from data in an unsupervised way. The recent success of supervised learning (mainly convolutional neural networks) in solving image reconstruction problems suggests that it could be a fruitful approach to designing regularizers. As a first experiment in this direction, we propose to denoise images using a variational formulation with a parametric, sparsity-promoting regularizer, where the parameters of the regularizer are learned to minimize the mean squared error of reconstructions on a training set of (ground truth image, measurement) pairs. Training involves solving a challenging bilievel optimization problem; we derive an expression for the gradient of the training loss using Karush-Kuhn-Tucker conditions and provide an accompanying gradient descent algorithm to minimize it. Our experiments on a simple synthetic, denoising problem show that the proposed method can learn an operator that outperforms well-known regularizers (total variation, DCT-sparsity, and unsupervised dictionary learning) and collaborative filtering. While the approach we present is specific to denoising, we believe that it can be adapted to the whole class of inverse problems with linear measurement models, giving it applicability to a wide range of image reconstruction problems.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube