Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Tensor train decompositions on recurrent networks (2006.05442v1)

Published 9 Jun 2020 in cs.LG and stat.ML

Abstract: Recurrent neural networks (RNN) such as long-short-term memory (LSTM) networks are essential in a multitude of daily live tasks such as speech, language, video, and multimodal learning. The shift from cloud to edge computation intensifies the need to contain the growth of RNN parameters. Current research on RNN shows that despite the performance obtained on convolutional neural networks (CNN), keeping a good performance in compressed RNNs is still a challenge. Most of the literature on compression focuses on CNNs using matrix product (MPO) operator tensor trains. However, matrix product state (MPS) tensor trains have more attractive features than MPOs, in terms of storage reduction and computing time at inference. We show that MPS tensor trains should be at the forefront of LSTM network compression through a theoretical analysis and practical experiments on NLP task.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.