Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A linear implicit Euler method for the finite element discretization of a controlled stochastic heat equation (2006.05370v1)

Published 9 Jun 2020 in math.NA, cs.NA, and math.OC

Abstract: We consider a numerical approximation of a linear quadratic control problem constrained by the stochastic heat equation with non-homogeneous Neumann boundary conditions. This involves a combination of distributed and boundary control, as well as both distributed and boundary noise. We apply the finite element method for the spatial discretization and the linear implicit Euler method for the temporal discretization. Due to the low regularity induced by the boundary noise, convergence orders above 1/2 in space and 1/4 in time cannot be expected. We prove such optimal convergence orders for our full discretization when the distributed noise and the initial condition are sufficiently smooth. Under less smooth conditions, the convergence order is further decreased. Our results only assume that the related (deterministic) differential Riccati equation can be approximated with a certain convergence order, which is easy to achieve in practice. We confirm these theoretical results through a numerical experiment in a two dimensional domain.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.