Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Combination of abstractive and extractive approaches for summarization of long scientific texts (2006.05354v2)

Published 9 Jun 2020 in cs.CL

Abstract: In this research work, we present a method to generate summaries of long scientific documents that uses the advantages of both extractive and abstractive approaches. Before producing a summary in an abstractive manner, we perform the extractive step, which then is used for conditioning the abstractor module. We used pre-trained transformer-based LLMs, for both extractor and abstractor. Our experiments showed that using extractive and abstractive models jointly significantly improves summarization results and ROUGE scores.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.