Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Design Challenges of Neural Network Acceleration Using Stochastic Computing (2006.05352v1)

Published 8 Jun 2020 in eess.SP and cs.LG

Abstract: The enormous and ever-increasing complexity of state-of-the-art neural networks (NNs) has impeded the deployment of deep learning on resource-limited devices such as the Internet of Things (IoTs). Stochastic computing exploits the inherent amenability to approximation characteristic of NNs to reduce their energy and area footprint, two critical requirements of small embedded devices suitable for the IoTs. This report evaluates and compares two recently proposed stochastic-based NN designs, referred to as BISC (Binary Interfaced Stochastic Computing) by Sim and Lee, 2017, and ESL (Extended Stochastic Logic) by Canals et al., 2016. Using analysis and simulation, we compare three distinct implementations of these designs in terms of performance, power consumption, area, and accuracy. We also discuss the overall challenges faced in adopting stochastic computing for building NNs. We find that BISC outperforms the other architectures when executing the LeNet-5 NN model applied to the MNIST digit recognition dataset. Our analysis and simulation experiments indicate that this architecture is around 50X faster, occupies 5.7X and 2.9X less area, and consumes 7.8X and 1.8X less power than the two ESL architectures.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)