Emergent Mind

Generalization Bounds in the Presence of Outliers: a Median-of-Means Study

(2006.05240)
Published Jun 9, 2020 in stat.ML and cs.LG

Abstract

In contrast to the empirical mean, the Median-of-Means (MoM) is an estimator of the mean $\theta$ of a square integrable r.v. $Z$, around which accurate nonasymptotic confidence bounds can be built, even when $Z$ does not exhibit a sub-Gaussian tail behavior. Thanks to the high confidence it achieves on heavy-tailed data, MoM has found various applications in machine learning, where it is used to design training procedures that are not sensitive to atypical observations. More recently, a new line of work is now trying to characterize and leverage MoM's ability to deal with corrupted data. In this context, the present work proposes a general study of MoM's concentration properties under the contamination regime, that provides a clear understanding of the impact of the outlier proportion and the number of blocks chosen. The analysis is extended to (multisample) $U$-statistics, i.e. averages over tuples of observations, that raise additional challenges due to the dependence induced. Finally, we show that the latter bounds can be used in a straightforward fashion to derive generalization guarantees for pairwise learning in a contaminated setting, and propose an algorithm to compute provably reliable decision functions.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.