Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Learning-to-Rank with Partitioned Preference: Fast Estimation for the Plackett-Luce Model (2006.05067v3)

Published 9 Jun 2020 in cs.LG and stat.ML

Abstract: We investigate the Plackett-Luce (PL) model based listwise learning-to-rank (LTR) on data with partitioned preference, where a set of items are sliced into ordered and disjoint partitions, but the ranking of items within a partition is unknown. Given $N$ items with $M$ partitions, calculating the likelihood of data with partitioned preference under the PL model has a time complexity of $O(N+S!)$, where $S$ is the maximum size of the top $M-1$ partitions. This computational challenge restrains most existing PL-based listwise LTR methods to a special case of partitioned preference, top-$K$ ranking, where the exact order of the top $K$ items is known. In this paper, we exploit a random utility model formulation of the PL model, and propose an efficient numerical integration approach for calculating the likelihood and its gradients with a time complexity $O(N+S3)$. We demonstrate that the proposed method outperforms well-known LTR baselines and remains scalable through both simulation experiments and applications to real-world eXtreme Multi-Label classification tasks.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.