Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot Generative Conversational Query Rewriting (2006.05009v1)

Published 9 Jun 2020 in cs.IR

Abstract: Conversational query rewriting aims to reformulate a concise conversational query to a fully specified, context-independent query that can be effectively handled by existing information retrieval systems. This paper presents a few-shot generative approach to conversational query rewriting. We develop two methods, based on rules and self-supervised learning, to generate weak supervision data using large amounts of ad hoc search sessions, and to fine-tune GPT-2 to rewrite conversational queries. On the TREC Conversational Assistance Track, our weakly supervised GPT-2 rewriter improves the state-of-the-art ranking accuracy by 12%, only using very limited amounts of manual query rewrites. In the zero-shot learning setting, the rewriter still gives a comparable result to previous state-of-the-art systems. Our analyses reveal that GPT-2 effectively picks up the task syntax and learns to capture context dependencies, even for hard cases that involve group references and long-turn dependencies.

Citations (134)

Summary

We haven't generated a summary for this paper yet.