Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Few-Shot Generative Conversational Query Rewriting (2006.05009v1)

Published 9 Jun 2020 in cs.IR

Abstract: Conversational query rewriting aims to reformulate a concise conversational query to a fully specified, context-independent query that can be effectively handled by existing information retrieval systems. This paper presents a few-shot generative approach to conversational query rewriting. We develop two methods, based on rules and self-supervised learning, to generate weak supervision data using large amounts of ad hoc search sessions, and to fine-tune GPT-2 to rewrite conversational queries. On the TREC Conversational Assistance Track, our weakly supervised GPT-2 rewriter improves the state-of-the-art ranking accuracy by 12%, only using very limited amounts of manual query rewrites. In the zero-shot learning setting, the rewriter still gives a comparable result to previous state-of-the-art systems. Our analyses reveal that GPT-2 effectively picks up the task syntax and learns to capture context dependencies, even for hard cases that involve group references and long-turn dependencies.

Citations (134)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.