Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 21 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Baseline for Shapley Values in MLPs: from Missingness to Neutrality (2006.04896v3)

Published 8 Jun 2020 in cs.LG and stat.ML

Abstract: Deep neural networks have gained momentum based on their accuracy, but their interpretability is often criticised. As a result, they are labelled as black boxes. In response, several methods have been proposed in the literature to explain their predictions. Among the explanatory methods, Shapley values is a feature attribution method favoured for its robust theoretical foundation. However, the analysis of feature attributions using Shapley values requires choosing a baseline that represents the concept of missingness. An arbitrary choice of baseline could negatively impact the explanatory power of the method and possibly lead to incorrect interpretations. In this paper, we present a method for choosing a baseline according to a neutrality value: as a parameter selected by decision-makers, the point at which their choices are determined by the model predictions being either above or below it. Hence, the proposed baseline is set based on a parameter that depends on the actual use of the model. This procedure stands in contrast to how other baselines are set, i.e. without accounting for how the model is used. We empirically validate our choice of baseline in the context of binary classification tasks, using two datasets: a synthetic dataset and a dataset derived from the financial domain.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube