Papers
Topics
Authors
Recent
2000 character limit reached

Maximum Entropy Model Rollouts: Fast Model Based Policy Optimization without Compounding Errors (2006.04802v2)

Published 8 Jun 2020 in cs.LG and stat.ML

Abstract: Model usage is the central challenge of model-based reinforcement learning. Although dynamics model based on deep neural networks provide good generalization for single step prediction, such ability is over exploited when it is used to predict long horizon trajectories due to compounding errors. In this work, we propose a Dyna-style model-based reinforcement learning algorithm, which we called Maximum Entropy Model Rollouts (MEMR). To eliminate the compounding errors, we only use our model to generate single-step rollouts. Furthermore, we propose to generate \emph{diverse} model rollouts by non-uniform sampling of the environment states such that the entropy of the model rollouts is maximized. We mathematically derived the maximum entropy sampling criteria for one data case under Gaussian prior. To accomplish this criteria, we propose to utilize a prioritized experience replay. Our preliminary experiments in challenging locomotion benchmarks show that our approach achieves the same sample efficiency of the best model-based algorithms, matches the asymptotic performance of the best model-free algorithms, and significantly reduces the computation requirements of other model-based methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.