Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

ResKD: Residual-Guided Knowledge Distillation (2006.04719v4)

Published 8 Jun 2020 in cs.CV

Abstract: Knowledge distillation, aimed at transferring the knowledge from a heavy teacher network to a lightweight student network, has emerged as a promising technique for compressing neural networks. However, due to the capacity gap between the heavy teacher and the lightweight student, there still exists a significant performance gap between them. In this paper, we see knowledge distillation in a fresh light, using the knowledge gap, or the residual, between a teacher and a student as guidance to train a much more lightweight student, called a res-student. We combine the student and the res-student into a new student, where the res-student rectifies the errors of the former student. Such a residual-guided process can be repeated until the user strikes the balance between accuracy and cost. At inference time, we propose a sample-adaptive strategy to decide which res-students are not necessary for each sample, which can save computational cost. Experimental results show that we achieve competitive performance with 18.04$\%$, 23.14$\%$, 53.59$\%$, and 56.86$\%$ of the teachers' computational costs on the CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet datasets. Finally, we do thorough theoretical and empirical analysis for our method.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.