Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Characterization of Cooperators in Quorum Sensing with 2D Molecular Signal Analysis (2006.04706v2)

Published 8 Jun 2020 in cs.IT and math.IT

Abstract: In quorum sensing (QS), bacteria exchange molecular signals to work together. An analytically-tractable model is presented for characterizing QS signal propagation within a population of bacteria and the number of responsive cooperative bacteria (i.e., cooperators) in a two-dimensional (2D) environment. Unlike prior works with a deterministic topology and a simplified molecular propagation channel, this work considers continuous emission, diffusion, degradation, and reception among randomly-distributed bacteria. Using stochastic geometry, the 2D channel response and the corresponding probability of cooperation at a bacterium are derived. Based on this probability, new expressions are derived for the moment generating function and different orders of moments of the number of cooperators. The analytical results agree with the simulation results obtained by a particle-based method. In addition, the Poisson and Gaussian distributions are compared to approximate the distribution of the number of cooperators and the Poisson distribution provides the best overall approximation. The derived channel response can be generally applied to any molecular communication model where single or multiple transmitters continuously release molecules into a 2D environment. The derived statistics of the number of cooperators can be used to predict and control the QS process, e.g., predicting and decreasing the likelihood of biofilm formation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube