Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Power Spherical distribution (2006.04437v2)

Published 8 Jun 2020 in stat.ML and cs.LG

Abstract: There is a growing interest in probabilistic models defined in hyper-spherical spaces, be it to accommodate observed data or latent structure. The von Mises-Fisher (vMF) distribution, often regarded as the Normal distribution on the hyper-sphere, is a standard modeling choice: it is an exponential family and thus enjoys important statistical results, for example, known Kullback-Leibler (KL) divergence from other vMF distributions. Sampling from a vMF distribution, however, requires a rejection sampling procedure which besides being slow poses difficulties in the context of stochastic backpropagation via the reparameterization trick. Moreover, this procedure is numerically unstable for certain vMFs, e.g., those with high concentration and/or in high dimensions. We propose a novel distribution, the Power Spherical distribution, which retains some of the important aspects of the vMF (e.g., support on the hyper-sphere, symmetry about its mean direction parameter, known KL from other vMF distributions) while addressing its main drawbacks (i.e., scalability and numerical stability). We demonstrate the stability of Power Spherical distributions with a numerical experiment and further apply it to a variational auto-encoder trained on MNIST. Code at: https://github.com/nicola-decao/power_spherical

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com