Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Power Spherical distribution (2006.04437v2)

Published 8 Jun 2020 in stat.ML and cs.LG

Abstract: There is a growing interest in probabilistic models defined in hyper-spherical spaces, be it to accommodate observed data or latent structure. The von Mises-Fisher (vMF) distribution, often regarded as the Normal distribution on the hyper-sphere, is a standard modeling choice: it is an exponential family and thus enjoys important statistical results, for example, known Kullback-Leibler (KL) divergence from other vMF distributions. Sampling from a vMF distribution, however, requires a rejection sampling procedure which besides being slow poses difficulties in the context of stochastic backpropagation via the reparameterization trick. Moreover, this procedure is numerically unstable for certain vMFs, e.g., those with high concentration and/or in high dimensions. We propose a novel distribution, the Power Spherical distribution, which retains some of the important aspects of the vMF (e.g., support on the hyper-sphere, symmetry about its mean direction parameter, known KL from other vMF distributions) while addressing its main drawbacks (i.e., scalability and numerical stability). We demonstrate the stability of Power Spherical distributions with a numerical experiment and further apply it to a variational auto-encoder trained on MNIST. Code at: https://github.com/nicola-decao/power_spherical

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com