Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

An Optimal Tester for $k$-Linear (2006.04409v1)

Published 8 Jun 2020 in cs.CC

Abstract: A Boolean function $f:{0,1}n\to {0,1}$ is $k$-linear if it returns the sum (over the binary field $F_2$) of $k$ coordinates of the input. In this paper, we study property testing of the classes $k$-Linear, the class of all $k$-linear functions, and $k$-Linear$*$, the class $\cup_{j=0}kj$-Linear. We give a non-adaptive distribution-free two-sided $\epsilon$-tester for $k$-Linear that makes $$O\left(k\log k+\frac{1}{\epsilon}\right)$$ queries. This matches the lower bound known from the literature. We then give a non-adaptive distribution-free one-sided $\epsilon$-tester for $k$-Linear$*$ that makes the same number of queries and show that any non-adaptive uniform-distribution one-sided $\epsilon$-tester for $k$-Linear must make at least $ \tilde\Omega(k)\log n+\Omega(1/\epsilon)$ queries. The latter bound, almost matches the upper bound $O(k\log n+1/\epsilon)$ known from the literature. We then show that any adaptive uniform-distribution one-sided $\epsilon$-tester for $k$-Linear must make at least $\tilde\Omega(\sqrt{k})\log n+\Omega(1/\epsilon)$ queries.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.