Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Neural Contraction Metrics for Robust Estimation and Control: A Convex Optimization Approach (2006.04361v3)

Published 8 Jun 2020 in eess.SY, cs.AI, cs.LG, cs.RO, cs.SY, and math.OC

Abstract: This paper presents a new deep learning-based framework for robust nonlinear estimation and control using the concept of a Neural Contraction Metric (NCM). The NCM uses a deep long short-term memory recurrent neural network for a global approximation of an optimal contraction metric, the existence of which is a necessary and sufficient condition for exponential stability of nonlinear systems. The optimality stems from the fact that the contraction metrics sampled offline are the solutions of a convex optimization problem to minimize an upper bound of the steady-state Euclidean distance between perturbed and unperturbed system trajectories. We demonstrate how to exploit NCMs to design an online optimal estimator and controller for nonlinear systems with bounded disturbances utilizing their duality. The performance of our framework is illustrated through Lorenz oscillator state estimation and spacecraft optimal motion planning problems.

Citations (51)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.