Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-step Estimation for Gradient-based Meta-learning (2006.04298v1)

Published 8 Jun 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Gradient-based meta-learning approaches have been successful in few-shot learning, transfer learning, and a wide range of other domains. Despite its efficacy and simplicity, the burden of calculating the Hessian matrix with large memory footprints is the critical challenge in large-scale applications. To tackle this issue, we propose a simple yet straightforward method to reduce the cost by reusing the same gradient in a window of inner steps. We describe the dynamics of the multi-step estimation in the Lagrangian formalism and discuss how to reduce evaluating second-order derivatives estimating the dynamics. To validate our method, we experiment on meta-transfer learning and few-shot learning tasks for multiple settings. The experiment on meta-transfer emphasizes the applicability of training meta-networks, where other approximations are limited. For few-shot learning, we evaluate time and memory complexities compared with popular baselines. We show that our method significantly reduces training time and memory usage, maintaining competitive accuracies, or even outperforming in some cases.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.