Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Restricted Boltzmann Machines with Sparse Latent Variables (2006.04166v2)

Published 7 Jun 2020 in cs.LG, cs.DS, cs.IT, math.IT, and stat.ML

Abstract: Restricted Boltzmann Machines (RBMs) are a common family of undirected graphical models with latent variables. An RBM is described by a bipartite graph, with all observed variables in one layer and all latent variables in the other. We consider the task of learning an RBM given samples generated according to it. The best algorithms for this task currently have time complexity $\tilde{O}(n2)$ for ferromagnetic RBMs (i.e., with attractive potentials) but $\tilde{O}(nd)$ for general RBMs, where $n$ is the number of observed variables and $d$ is the maximum degree of a latent variable. Let the MRF neighborhood of an observed variable be its neighborhood in the Markov Random Field of the marginal distribution of the observed variables. In this paper, we give an algorithm for learning general RBMs with time complexity $\tilde{O}(n{2s+1})$, where $s$ is the maximum number of latent variables connected to the MRF neighborhood of an observed variable. This is an improvement when $s < \log_2 (d-1)$, which corresponds to RBMs with sparse latent variables. Furthermore, we give a version of this learning algorithm that recovers a model with small prediction error and whose sample complexity is independent of the minimum potential in the Markov Random Field of the observed variables. This is of interest because the sample complexity of current algorithms scales with the inverse of the minimum potential, which cannot be controlled in terms of natural properties of the RBM.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube