Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SERank: Optimize Sequencewise Learning to Rank Using Squeeze-and-Excitation Network (2006.04084v1)

Published 7 Jun 2020 in cs.IR

Abstract: Learning-to-rank (LTR) is a set of supervised machine learning algorithms that aim at generating optimal ranking order over a list of items. A lot of ranking models have been studied during the past decades. And most of them treat each query document pair independently during training and inference. Recently, there are a few methods have been proposed which focused on mining information across ranking candidates list for further improvements, such as learning multivariant scoring function or learning contextual embedding. However, these methods usually greatly increase computational cost during online inference, especially when with large candidates size in real-world web search systems. What's more, there are few studies that focus on novel design of model structure for leveraging information across ranking candidates. In this work, we propose an effective and efficient method named as SERank which is a Sequencewise Ranking model by using Squeeze-and-Excitation network to take advantage of cross-document information. Moreover, we examine our proposed methods on several public benchmark datasets, as well as click logs collected from a commercial Question Answering search engine, Zhihu. In addition, we also conduct online A/B testing at Zhihu search engine to further verify the proposed approach. Results on both offline datasets and online A/B testing demonstrate that our method contributes to a significant improvement.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube