Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

AI from concrete to abstract: demystifying artificial intelligence to the general public (2006.04013v6)

Published 7 Jun 2020 in cs.CY

Abstract: AI has been adopted in a wide range of domains. This shows the imperative need to develop means to endow common people with a minimum understanding of what AI means. Combining visual programming and WiSARD weightless artificial neural networks, this article presents a new methodology, AI from concrete to abstract (AIcon2abs), to enable general people (including children) to achieve this goal. The main strategy adopted by is to promote a demystification of artificial intelligence via practical activities related to the development of learning machines, as well as through the observation of their learning process. Thus, it is possible to provide subjects with skills that contributes to making them insightful actors in debates and decisions involving the adoption of artificial intelligence mechanisms. Currently, existing approaches to the teaching of basic AI concepts through programming treat machine intelligence as an external element/module. After being trained, that external module is coupled to the main application being developed by the learners. In the methodology herein presented, both training and classification tasks are blocks that compose the main program, just as the other programming constructs. As a beneficial side effect of AIcon2abs, the difference between a program capable of learning from data and a conventional computer program becomes more evident. In addition, the simplicity of the WiSARD weightless artificial neural network model enables easy visualization and understanding of training and classification tasks internal realization.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.