No-Reference Image Quality Assessment via Feature Fusion and Multi-Task Learning (2006.03783v1)
Abstract: Blind or no-reference image quality assessment (NR-IQA) is a fundamental, unsolved, and yet challenging problem due to the unavailability of a reference image. It is vital to the streaming and social media industries that impact billions of viewers daily. Although previous NR-IQA methods leveraged different feature extraction approaches, the performance bottleneck still exists. In this paper, we propose a simple and yet effective general-purpose no-reference (NR) image quality assessment (IQA) framework based on multi-task learning. Our model employs distortion types as well as subjective human scores to predict image quality. We propose a feature fusion method to utilize distortion information to improve the quality score estimation task. In our experiments, we demonstrate that by utilizing multi-task learning and our proposed feature fusion method, our model yields better performance for the NR-IQA task. To demonstrate the effectiveness of our approach, we test our approach on seven standard datasets and show that we achieve state-of-the-art results on various datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.