Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MMSE Bounds Under Kullback-Leibler Divergence Constraints on the Joint Input-Output Distribution (2006.03722v1)

Published 5 Jun 2020 in cs.IT, math.IT, and stat.OT

Abstract: This paper proposes a new family of lower and upper bounds on the minimum mean squared error (MMSE). The key idea is to minimize/maximize the MMSE subject to the constraint that the joint distribution of the input-output statistics lies in a Kullback-Leibler divergence ball centered at some Gaussian reference distribution. Both bounds are tight and are attained by Gaussian distributions whose mean is identical to that of the reference distribution and whose covariance matrix is determined by a scalar parameter that can be obtained by finding the root of a monotonic function. The upper bound corresponds to a minimax optimal estimator and provides performance guarantees under distributional uncertainty. The lower bound provides an alternative to well-known inequalities in estimation theory, such as the Cram\'er-Rao bound, that is potentially tighter and defined for a larger class of distributions. Examples of applications in signal processing and information theory illustrate the usefulness of the proposed bounds in practice.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.