Skedulix: Hybrid Cloud Scheduling for Cost-Efficient Execution of Serverless Applications (2006.03720v1)
Abstract: We present a framework for scheduling multifunction serverless applications over a hybrid public-private cloud. A set of serverless jobs is input as a batch, and the objective is to schedule function executions over the hybrid platform to minimize the cost of public cloud use, while completing all jobs by a specified deadline. As this scheduling problem is NP-Hard, we propose a greedy algorithm that dynamically determines both the order and placement of each function execution using predictive models of function execution time and network latencies. We present a prototype implementation of our framework that uses AWS Lambda and OpenFaaS, for the public and private cloud, respectively. We evaluate our prototype in live experiments using a mixture of compute and I/O heavy serverless applications. Our results show that our framework can achieve a speedup in batch processing of up to 1.92 times that of an approach that uses only the private cloud, at 40.5% the cost of an approach that uses only the public cloud.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.