Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Skedulix: Hybrid Cloud Scheduling for Cost-Efficient Execution of Serverless Applications (2006.03720v1)

Published 5 Jun 2020 in cs.DC and cs.NI

Abstract: We present a framework for scheduling multifunction serverless applications over a hybrid public-private cloud. A set of serverless jobs is input as a batch, and the objective is to schedule function executions over the hybrid platform to minimize the cost of public cloud use, while completing all jobs by a specified deadline. As this scheduling problem is NP-Hard, we propose a greedy algorithm that dynamically determines both the order and placement of each function execution using predictive models of function execution time and network latencies. We present a prototype implementation of our framework that uses AWS Lambda and OpenFaaS, for the public and private cloud, respectively. We evaluate our prototype in live experiments using a mixture of compute and I/O heavy serverless applications. Our results show that our framework can achieve a speedup in batch processing of up to 1.92 times that of an approach that uses only the private cloud, at 40.5% the cost of an approach that uses only the public cloud.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.