Emergent Mind

Higher-Order Explanations of Graph Neural Networks via Relevant Walks

(2006.03589)
Published Jun 5, 2020 in cs.LG , cs.AI , and stat.ML

Abstract

Graph Neural Networks (GNNs) are a popular approach for predicting graph structured data. As GNNs tightly entangle the input graph into the neural network structure, common explainable AI approaches are not applicable. To a large extent, GNNs have remained black-boxes for the user so far. In this paper, we show that GNNs can in fact be naturally explained using higher-order expansions, i.e. by identifying groups of edges that jointly contribute to the prediction. Practically, we find that such explanations can be extracted using a nested attribution scheme, where existing techniques such as layer-wise relevance propagation (LRP) can be applied at each step. The output is a collection of walks into the input graph that are relevant for the prediction. Our novel explanation method, which we denote by GNN-LRP, is applicable to a broad range of graph neural networks and lets us extract practically relevant insights on sentiment analysis of text data, structure-property relationships in quantum chemistry, and image classification.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.