Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graphon Neural Networks and the Transferability of Graph Neural Networks (2006.03548v2)

Published 5 Jun 2020 in cs.LG and stat.ML

Abstract: Graph neural networks (GNNs) rely on graph convolutions to extract local features from network data. These graph convolutions combine information from adjacent nodes using coefficients that are shared across all nodes. Since these coefficients are shared and do not depend on the graph, one can envision using the same coefficients to define a GNN on another graph. This motivates analyzing the transferability of GNNs across graphs. In this paper we introduce graphon NNs as limit objects of GNNs and prove a bound on the difference between the output of a GNN and its limit graphon-NN. This bound vanishes with growing number of nodes if the graph convolutional filters are bandlimited in the graph spectral domain. This result establishes a tradeoff between discriminability and transferability of GNNs.

Citations (130)

Summary

We haven't generated a summary for this paper yet.