Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Scaling Up Distance-generalized Core Decomposition (2006.03372v2)

Published 5 Jun 2020 in cs.DS

Abstract: Core decomposition is a fundamental operator in network analysis. In this paper, we study the problem of computing distance-generalized core decomposition on a network. A distance-generalized core, also termed $(k, h)$-core, is a maximal subgraph in which every vertex has at least $k$ other vertices at distance no larger than $h$. The state-of-the-art algorithm for solving this problem is based on a peeling technique which iteratively removes the vertex (denoted by $v$) from the graph that has the smallest $h$-degree. The $h$-degree of a vertex $v$ denotes the number of other vertices that are reachable from $v$ within $h$ hops. Such a peeling algorithm, however, needs to frequently recompute the $h$-degrees of $v$'s neighbors after deleting $v$, which is typically very costly for a large $h$. To overcome this limitation, we propose an efficient peeling algorithm based on a novel $h$-degree updating technique. Instead of recomputing the $h$-degrees, our algorithm can dynamically maintain the $h$-degrees for all vertices via exploring a very small subgraph, after peeling a vertex. We show that such an $h$-degree updating procedure can be efficiently implemented by an elegant bitmap technique. In addition, we also propose a sampling-based algorithm and a parallelization technique to further improve the efficiency. Finally, we conduct extensive experiments on 12 real-world graphs to evaluate our algorithms. The results show that, when $h\ge 3$, our exact and sampling-based algorithms can achieve up to $10\times$ and $100\times$ speedup over the state-of-the-art algorithm, respectively.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.