Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

PLANS: Robust Program Learning from Neurally Inferred Specifications (2006.03312v1)

Published 5 Jun 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Recent years have seen the rise of statistical program learning based on neural models as an alternative to traditional rule-based systems for programming by example. Rule-based approaches offer correctness guarantees in an unsupervised way as they inherently capture logical rules, while neural models are more realistically scalable to raw, high-dimensional input, and provide resistance to noisy I/O specifications. We introduce PLANS (Program LeArning from Neurally inferred Specifications), a hybrid model for program synthesis from visual observations that gets the best of both worlds, relying on (i) a neural architecture trained to extract abstract, high-level information from each raw individual input (ii) a rule-based system using the extracted information as I/O specifications to synthesize a program capturing the different observations. In order to address the key challenge of making PLANS resistant to noise in the network's output, we introduce a filtering heuristic for I/O specifications based on selective classification techniques. We obtain state-of-the-art performance at program synthesis from diverse demonstration videos in the Karel and ViZDoom environments, while requiring no ground-truth program for training. We make our implementation available at github.com/rdang-nhu/PLANS.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.