Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Siamese Neural Network with Modified Distance Loss For Transfer Learning in Speech Emotion Recognition (2006.03001v1)

Published 4 Jun 2020 in cs.CV and cs.LG

Abstract: Automatic emotion recognition plays a significant role in the process of human computer interaction and the design of Internet of Things (IOT) technologies. Yet, a common problem in emotion recognition systems lies in the scarcity of reliable labels. By modeling pairwise differences between samples of interest, a Siamese network can help to mitigate this challenge since it requires fewer samples than traditional deep learning methods. In this paper, we propose a distance loss, which can be applied on the Siamese network fine-tuning, by optimizing the model based on the relevant distance between same and difference class pairs. Our system use samples from the source data to pre-train the weights of proposed Siamese neural network, which are fine-tuned based on the target data. We present an emotion recognition task that uses speech, since it is one of the most ubiquitous and frequently used bio-behavioral signals. Our target data comes from the RAVDESS dataset, while the CREMA-D and eNTERFACE'05 are used as source data, respectively. Our results indicate that the proposed distance loss is able to greatly benefit the fine-tuning process of Siamese network. Also, the selection of source data has more effect on the Siamese network performance compared to the number of frozen layers. These suggest the great potential of applying the Siamese network and modelling pairwise differences in the field of transfer learning for automatic emotion recognition.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube