Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

CiwGAN and fiwGAN: Encoding information in acoustic data to model lexical learning with Generative Adversarial Networks (2006.02951v3)

Published 4 Jun 2020 in cs.CL and cs.LG

Abstract: How can deep neural networks encode information that corresponds to words in human speech into raw acoustic data? This paper proposes two neural network architectures for modeling unsupervised lexical learning from raw acoustic inputs, ciwGAN (Categorical InfoWaveGAN) and fiwGAN (Featural InfoWaveGAN), that combine a Deep Convolutional GAN architecture for audio data (WaveGAN; arXiv:1705.07904) with an information theoretic extension of GAN -- InfoGAN (arXiv:1606.03657), and propose a new latent space structure that can model featural learning simultaneously with a higher level classification and allows for a very low-dimension vector representation of lexical items. Lexical learning is modeled as emergent from an architecture that forces a deep neural network to output data such that unique information is retrievable from its acoustic outputs. The networks trained on lexical items from TIMIT learn to encode unique information corresponding to lexical items in the form of categorical variables in their latent space. By manipulating these variables, the network outputs specific lexical items. The network occasionally outputs innovative lexical items that violate training data, but are linguistically interpretable and highly informative for cognitive modeling and neural network interpretability. Innovative outputs suggest that phonetic and phonological representations learned by the network can be productively recombined and directly paralleled to productivity in human speech: a fiwGAN network trained on suit' anddark' outputs innovative start', even though it never sawstart' or even a [st] sequence in the training data. We also argue that setting latent featural codes to values well beyond training range results in almost categorical generation of prototypical lexical items and reveals underlying values of each latent code.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.