Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

What Makes a Top-Performing Precision Medicine Search Engine? Tracing Main System Features in a Systematic Way (2006.02785v2)

Published 4 Jun 2020 in cs.IR

Abstract: From 2017 to 2019 the Text REtrieval Conference (TREC) held a challenge task on precision medicine using documents from medical publications (PubMed) and clinical trials. Despite lots of performance measurements carried out in these evaluation campaigns, the scientific community is still pretty unsure about the impact individual system features and their weights have on the overall system performance. In order to overcome this explanatory gap, we first determined optimal feature configurations using the Sequential Model-based Algorithm Configuration (SMAC) program and applied its output to a BM25-based search engine. We then ran an ablation study to systematically assess the individual contributions of relevant system features: BM25 parameters, query type and weighting schema, query expansion, stop word filtering, and keyword boosting. For evaluation, we employed the gold standard data from the three TREC-PM instaLLMents to evaluate the effectiveness of different features using the commonly shared infNDCG metric.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.