Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Numerical methods for accurate computation of the eigenvalues of Hermitian matrices and the singular values of general matrices (2006.02753v1)

Published 4 Jun 2020 in math.NA and cs.NA

Abstract: This paper offers a review of numerical methods for computation of the eigenvalues of Hermitian matrices and the singular values of general and some classes of structured matrices. The focus is on the main principles behind the methods that guarantee high accuracy even in the cases that are ill-conditioned for the conventional methods. First, it is shown that a particular structure of the errors in a finite precision implementation of an algorithm allows for a much better measure of sensitivity and that computation with high accuracy is possible despite a large classical condition number. Such structured errors incurred by finite precision computation are in some algorithms e.g. entry-wise or column-wise small, which is much better than the usually considered errors that are in general small only when measured in the Frobenius matrix norm. Specially tailored perturbation theory for such structured perturbations of Hermitian matrices guarantees much better bounds for the relative errors in the computed eigenvalues. % Secondly, we review an unconventional approach to accurate computation of the singular values and eigenvalues of some notoriously ill-conditioned structured matrices, such as e.g. Cauchy, Vandermonde and Hankel matrices. The distinctive feature of accurate algorithms is using the intrinsic parameters that define such matrices to obtain a non-orthogonal factorization, such as the \textsf{LDU} factorization, and then computing the singular values of the product of thus computed factors. The state of the art software is discussed as well.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)