Papers
Topics
Authors
Recent
2000 character limit reached

A New Discretization Scheme for One Dimensional Stochastic Differential Equations Using Time Change Method (2006.02626v1)

Published 4 Jun 2020 in math.PR, cs.NA, and math.NA

Abstract: We propose a new numerical method for one dimensional stochastic differential equations (SDEs). The main idea of this method is based on a representation of a weak solution of a SDE with a time changed Brownian motion, dated back to Doeblin (1940). In cases where the diffusion coefficient is bounded and $\beta$-H\"{o}lder continuous with $0 < \beta \leq 1$, we provide the rate of strong convergence. An advantage of our approach is that we approximate the weak solution, which enables us to treat a SDE with no strong solution. Our scheme is the first to achieve the strong convergence for the case $0 < \beta < 1/2$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.