Meta Dialogue Policy Learning (2006.02588v1)
Abstract: Dialog policy determines the next-step actions for agents and hence is central to a dialogue system. However, when migrated to novel domains with little data, a policy model can fail to adapt due to insufficient interactions with the new environment. We propose Deep Transferable Q-Network (DTQN) to utilize shareable low-level signals between domains, such as dialogue acts and slots. We decompose the state and action representation space into feature subspaces corresponding to these low-level components to facilitate cross-domain knowledge transfer. Furthermore, we embed DTQN in a meta-learning framework and introduce Meta-DTQN with a dual-replay mechanism to enable effective off-policy training and adaptation. In experiments, our model outperforms baseline models in terms of both success rate and dialogue efficiency on the multi-domain dialogue dataset MultiWOZ 2.0.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.