Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Low-light Image Enhancement Using the Cell Vibration Model (2006.02271v2)

Published 3 Jun 2020 in eess.IV and cs.CV

Abstract: Low light very likely leads to the degradation of an image's quality and even causes visual task failures. Existing image enhancement technologies are prone to overenhancement, color distortion or time consumption, and their adaptability is fairly limited. Therefore, we propose a new single low-light image lightness enhancement method. First, an energy model is presented based on the analysis of membrane vibrations induced by photon stimulations. Then, based on the unique mathematical properties of the energy model and combined with the gamma correction model, a new global lightness enhancement model is proposed. Furthermore, a special relationship between image lightness and gamma intensity is found. Finally, a local fusion strategy, including segmentation, filtering and fusion, is proposed to optimize the local details of the global lightness enhancement images. Experimental results show that the proposed algorithm is superior to nine state-of-the-art methods in avoiding color distortion, restoring the textures of dark areas, reproducing natural colors and reducing time cost. The image source and code will be released at https://github.com/leixiaozhou/CDEFmethod.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.