Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Transfer Learning for British Sign Language Modelling (2006.02144v1)

Published 3 Jun 2020 in cs.CL

Abstract: Automatic speech recognition and spoken dialogue systems have made great advances through the use of deep machine learning methods. This is partly due to greater computing power but also through the large amount of data available in common languages, such as English. Conversely, research in minority languages, including sign languages, is hampered by the severe lack of data. This has led to work on transfer learning methods, whereby a model developed for one language is reused as the starting point for a model on a second language, which is less resourced. In this paper, we examine two transfer learning techniques of fine-tuning and layer substitution for LLMling of British Sign Language. Our results show improvement in perplexity when using transfer learning with standard stacked LSTM models, trained initially using a large corpus for standard English from the Penn Treebank corpus

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.