Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Convex Regression in Multidimensions: Suboptimality of Least Squares Estimators (2006.02044v2)

Published 3 Jun 2020 in math.ST, stat.ML, and stat.TH

Abstract: Under the usual nonparametric regression model with Gaussian errors, Least Squares Estimators (LSEs) over natural subclasses of convex functions are shown to be suboptimal for estimating a $d$-dimensional convex function in squared error loss when the dimension $d$ is 5 or larger. The specific function classes considered include: (i) bounded convex functions supported on a polytope (in random design), (ii) Lipschitz convex functions supported on any convex domain (in random design), (iii) convex functions supported on a polytope (in fixed design). For each of these classes, the risk of the LSE is proved to be of the order $n{-2/d}$ (up to logarithmic factors) while the minimax risk is $n{-4/(d+4)}$, when $d \ge 5$. In addition, the first rate of convergence results (worst case and adaptive) for the unrestricted convex LSE are established in fixed-design for polytopal domains for all $d \geq 1$. Some new metric entropy results for convex functions are also proved which are of independent interest.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.