Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nurse is Closer to Woman than Surgeon? Mitigating Gender-Biased Proximities in Word Embeddings (2006.01938v1)

Published 2 Jun 2020 in cs.CL and cs.LG

Abstract: Word embeddings are the standard model for semantic and syntactic representations of words. Unfortunately, these models have been shown to exhibit undesirable word associations resulting from gender, racial, and religious biases. Existing post-processing methods for debiasing word embeddings are unable to mitigate gender bias hidden in the spatial arrangement of word vectors. In this paper, we propose RAN-Debias, a novel gender debiasing methodology which not only eliminates the bias present in a word vector but also alters the spatial distribution of its neighbouring vectors, achieving a bias-free setting while maintaining minimal semantic offset. We also propose a new bias evaluation metric - Gender-based Illicit Proximity Estimate (GIPE), which measures the extent of undue proximity in word vectors resulting from the presence of gender-based predilections. Experiments based on a suite of evaluation metrics show that RAN-Debias significantly outperforms the state-of-the-art in reducing proximity bias (GIPE) by at least 42.02%. It also reduces direct bias, adding minimal semantic disturbance, and achieves the best performance in a downstream application task (coreference resolution).

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.