Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast Algorithms for Join Operations on Tree Decompositions (2006.01588v1)

Published 2 Jun 2020 in cs.DS

Abstract: Treewidth is a measure of how tree-like a graph is. It has many important algorithmic applications because many NP-hard problems on general graphs become tractable when restricted to graphs of bounded treewidth. Algorithms for problems on graphs of bounded treewidth mostly are dynamic programming algorithms using the structure of a tree decomposition of the graph. The bottleneck in the worst-case run time of these algorithms often is the computations for the so called join nodes in the associated nice tree decomposition. In this paper, we review two different approaches that have appeared in the literature about computations for the join nodes: one using fast zeta and M\"obius transforms and one using fast Fourier transforms. We combine these approaches to obtain new, faster algorithms for a broad class of vertex subset problems known as the [\sigma,\rho]-domination problems. Our main result is that we show how to solve [\sigma,\rho]-domination problems in $O(s{t+2} t n2 (t\log(s)+\log(n)))$ arithmetic operations. Here, t is the treewidth, s is the (fixed) number of states required to represent partial solutions of the specific [\sigma,\rho]-domination problem, and n is the number of vertices in the graph. This reduces the polynomial factors involved compared to the previously best time bound (van Rooij, Bodlaender, Rossmanith, ESA 2009) of $O( s{t+2} (st){2(s-2)} n3 )$ arithmetic operations. In particular, this removes the dependence of the degree of the polynomial on the fixed number of states~$s$.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube