Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantized tensor FEM for multiscale problems: diffusion problems in two and three dimensions (2006.01455v1)

Published 2 Jun 2020 in math.NA and cs.NA

Abstract: Homogenization in terms of multiscale limits transforms a multiscale problem with $n+1$ asymptotically separated microscales posed on a physical domain $D \subset \mathbb{R}d$ into a one-scale problem posed on a product domain of dimension $(n+1)d$ by introducing $n$ so-called "fast variables". This procedure allows to convert $n+1$ scales in $d$ physical dimensions into a single-scale structure in $(n+1)d$ dimensions. We prove here that both the original, physical multiscale problem and the corresponding high-dimensional, one-scale limiting problem can be efficiently treated numerically with the recently developed quantized tensor-train finite-element method (QTT-FEM). The method is based on restricting computation to sequences of nested subspaces of low dimensions (which are called tensor ranks) within a vast but generic "virtual" (background) discretization space. In the course of computation, these subspaces are computed iteratively and data-adaptively at runtime, bypassing any "offline precomputation". For the purpose of theoretical analysis, such low-dimensional subspaces are constructed analytically to bound the tensor ranks vs. error $\tau>0$. We consider a model linear elliptic multiscale problem in several physical dimensions and show, theoretically and experimentally, that both (i) the solution of the associated high-dimensional one-scale problem and (ii) the corresponding approximation to the solution of the multiscale problem admit efficient approximation by the QTT-FEM. These problems can therefore be numerically solved in a scale-robust fashion by standard (low-order) PDE discretizations combined with state-of-the-art general-purpose solvers for tensor-structured linear systems. We prove scale-robust exponential convergence, i.e., that QTT-FEM achieves accuracy $\tau$ with the number of effective degrees of freedom scaling polynomially in $\log \tau$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube