Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exploring the role of Input and Output Layers of a Deep Neural Network in Adversarial Defense (2006.01408v1)

Published 2 Jun 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Deep neural networks are learning models having achieved state of the art performance in many fields like prediction, computer vision, language processing and so on. However, it has been shown that certain inputs exist which would not trick a human normally, but may mislead the model completely. These inputs are known as adversarial inputs. These inputs pose a high security threat when such models are used in real world applications. In this work, we have analyzed the resistance of three different classes of fully connected dense networks against the rarely tested non-gradient based adversarial attacks. These classes are created by manipulating the input and output layers. We have proven empirically that owing to certain characteristics of the network, they provide a high robustness against these attacks, and can be used in fine tuning other models to increase defense against adversarial attacks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.