Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models (2006.01293v1)

Published 1 Jun 2020 in cs.LG and stat.ML

Abstract: Submodular functions have been studied extensively in machine learning and data mining. In particular, the optimization of submodular functions over the integer lattice (integer submodular functions) has recently attracted much interest, because this domain relates naturally to many practical problem settings, such as multilabel graph cut, budget allocation and revenue maximization with discrete assignments. In contrast, the use of these functions for probabilistic modeling has received surprisingly little attention so far. In this work, we firstly propose the Generalized Multilinear Extension, a continuous DR-submodular extension for integer submodular functions. We study central properties of this extension and formulate a new probabilistic model which is defined through integer submodular functions. Then, we introduce a block-coordinate ascent algorithm to perform approximate inference for those class of models. Finally, we demonstrate its effectiveness and viability on several real-world social connection graph datasets with integer submodular objectives.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.