Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Affective Bidirectional Transformers for Offensive Language Detection (2006.01266v1)

Published 16 May 2020 in cs.CL

Abstract: Social media are pervasive in our life, making it necessary to ensure safe online experiences by detecting and removing offensive and hate speech. In this work, we report our submission to the Offensive Language and hate-speech Detection shared task organized with the 4th Workshop on Open-Source Arabic Corpora and Processing Tools Arabic (OSACT4). We focus on developing purely deep learning systems, without a need for feature engineering. For that purpose, we develop an effective method for automatic data augmentation and show the utility of training both offensive and hate speech models off (i.e., by fine-tuning) previously trained affective models (i.e., sentiment and emotion). Our best models are significantly better than a vanilla BERT model, with 89.60% acc (82.31% macro F1) for hate speech and 95.20% acc (70.51% macro F1) on official TEST data.

Citations (24)

Summary

We haven't generated a summary for this paper yet.